# spirax sarco 

## TI-GCM-03

CM Issue 6

## Conversion Tables

The following conversion tables will provide a conversion between SI, metric, USA and Imperial systems. All the tables use a multiplying factor:
Table 1 Length

| From To $\rightarrow$ | millimetre | centimetre | metre | kilometre | inch | foot | yard | mile |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| millimetre | 1 | 0.1 | 0.001 | - | 0.03937 | - | - | - |
| centimetre | 10 | 1 | 0.01 | - | 0.393701 | 0.032808 | - | - |
| metre | 1000 | 100 | 1 | 0.001 | 39.3701 | 3.28084 | 1.09361 | - |
| kilometre | - | - | 1000 | 1 | - | 3280.84 | 1093.61 | 0.621371 |
| inch | 25.4 | 2.54 | - | - | 1 | 0.083333 | 0.027778 | - |
| foot | 304.8 | 30.48 | 0.3048 | - | 12 | 1 | 0.33333 | - |
| yard | 914.4 | 91.44 | 0.9144 | 0.000914 | 36 | 3 | 1 | 0.000568 |
| mile | - | - | 1609.344 | 1.609344 | - | 5280 | 1760 | 1 |
| Table 2 Area |  |  |  |  |  |  |  |  |
| From To $\rightarrow$ | cm ${ }^{2}$ | $\mathrm{m}^{2}$ | km ${ }^{2}$ | in ${ }^{2}$ | $\mathrm{ft}^{2}$ | $\mathrm{yd}^{2}$ | acre | mile ${ }^{2}$ |
| $\mathrm{cm}^{2}$ | 1 | 0.0001 | - | 0.155 | 0.001076 | 0.0001196 | - | - |
| $\mathrm{m}^{2}$ | 10000 | 1 | 0.000001 | 1550 | 10.7639 | 1.19599 | 0.0002471 | - |
| $\mathrm{km}^{2}$ | - | 1000000 | 1 | - | - | - | 247.105 | 0.386102 |
| $\mathrm{in}^{2}$ | 6.4516 | 0.000645 | - | 1 | 0.006944 | 0.000772 | - | - |
| $\mathrm{ft}^{2}$ | 929.03 | 0.092903 | - | 144 | 1 | 0.111111 | 0.000023 | - |
| $\mathrm{yd}^{2}$ | 8361.27 | 0.836127 | - | 1296 | 9 | 1 | 0.0002066 | - |
| acre | - | 4046.86 | 0.004047 | - | 43560 | 4840 | 1 | 0.001562 |
| mile $^{2}$ | - | - | 2.589987 | - | - | - | 640 | 1 |

Table 3 Mass

| From To $\rightarrow$ | $\mathbf{k g}$ | tonne | $\mathbf{l b}$ | UK cwt | UK ton | US cwt | US ton |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{k g}$ | 1 | 0.001 | 2.20462 | 0.019684 | 0.000984 | 0.022046 | 0.001102 |
| tonne | 1000 | 1 | 2204.62 | 19.6841 | 0.984207 | 22.0462 | 1.10231 |
| lb | 0.453592 | 0.000454 | 1 | 0.008929 | 0.000446 | 0.01 | 0.0005 |
| UK cwt | 50.8023 | 0.050802 | 112 | 1 | 0.05 | 1.12 | 0.056 |
| UK ton | 1016.05 | 1.01605 | 2240 | 20 | 1 | 22.4 | 1.12 |
| US cwt | 45.3592 | 0.045359 | 100 | 0.892857 | 0.044643 | 1 | 0.05 |
| US ton | 907.185 | 0.907185 | 2000 | 17.8517 | 0.892857 | 20 | 1 |


| From To $\rightarrow$ | $\mathrm{cm}^{3}$ | $\mathrm{m}^{3}$ | litre ( $\mathrm{dm}^{3}$ ) | $\mathrm{in}^{3}$ | $\mathrm{ft}^{3}$ | $\mathrm{yd}^{3}$ | UK pint | UK gall | US pint | US gall |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{cm}^{3}$ | 1 | - | 0.001 | 0.061024 | 0.0000353 | - | 0.001760 | 0.00022 | 0.002113 | 0.000264 |
| $\mathrm{m}^{3}$ | - | 1 | 1000 | 61023.7 | 35.3147 | 1.30795 | 1759.75 | 219.969 | 2113.38 | 264.172 |
| litre ( $\mathrm{dm}^{3}$ ) | 1000 | 0.001 | 1 | 61.0237 | 0.035315 | 0.001308 | 1.75975 | 0.219969 | 2.11338 | 0.264172 |
| $\mathrm{in}^{3}$ | 16.3871 | - | 0.016387 | 1 | 0.0005787 | 0.0000214 | 0.028837 | 0.003605 | 0.034632 | 0.004329 |
| $\mathrm{ft}^{3}$ | 28316.8 | 0.028317 | 28.3168 | 1728 | 1 | 0.037037 | 49.8307 | 6.22883 | 59.8442 | 7.48052 |
| $\mathrm{yd}^{3}$ | 764555 | 0.764555 | 764.555 | 46656 | 27 | 1 | 1345.429 | 168.1784 | 1615.793 | 201.974 |
| UK pint | 568.261 | 0.0005683 | 0.568261 | 34.6774 | 0.020068 | 0.000743 | 1 | 0.125 | 1.20095 | 0.150119 |
| UK gall | 4546.09 | 0.0045461 | 4.54609 | 277.42 | 0.160544 | 0.005946 | 8 | 1 | 9.6076 | 1.20095 |
| US pint | 473.176 | 0.0004732 | 0.473176 | 28.875 | 0.01671 | 0.000619 | 0.832674 | 0.104084 | 1 | 0.125 |
| US gall | 3785.41 | 0.0037854 | 3.785411 | 231 | 0.133681 | 0.004951 | 6.661392 | 0.832674 | 8 | 1 |

Table 5 Pressure

| From $\mathbf{T o} \boldsymbol{\rightarrow}$ | atmos | $\mathbf{m m ~ H g}$ | mbar | bar | pascal | in $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ | in Hg | psi |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| atmos | 1 | 760 | 1013.25 | 1.0132 | 101325 | 406.781 | 29.9213 | 14.6959 |
| $\mathbf{m m ~ H g}$ | 0.0013158 | 1 | 1.33322 | 0.001333 | 133.322 | 0.53524 | 0.03937 | 0.019337 |
| $\mathbf{m b a r}$ | 0.0009869 | 0.750062 | 1 | 0.001 | 100 | 0.401463 | 0.02953 | 0.014504 |
| bar | 0.9869 | 750.062 | 1000 | 1 | 100000 | 401.463 | 29.53 | 14.504 |
| pascal | 0.000099 | 0.007501 | 0.01 | 0.00001 | 1 | 0.004015 | 0.0002953 | 0.00145 |
| in $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ | 0.0024583 | 1.86832 | 2.49089 | 0.002491 | 249.089 | 1 | 0.073556 | 0.036127 |
| in $\mathbf{H g}$ | 0.033421 | 25.4 | 33.8639 | 0.0338639 | 3386.39 | 13.5951 | 1 | 0.49154 |
| $\mathbf{p s i}$ | 0.068046 | 51.7149 | 68.9476 | 0.068948 | 6894.76 | 27.6799 | 2.03602 | $\mathbf{1}$ |

Note: 1 pascal $=1 \mathrm{~N} / \mathrm{m}^{2}$

> First for Steam Solutions

## Conversion tables

Table 6 Volume rate of flow

| From To | $\rightarrow \underset{\left(\mathrm{dm}^{3} / \mathrm{sec}\right)}{\mathrm{L} / \mathrm{sec}}$ | L/h | $\mathrm{m}^{3} / \mathrm{s}$ | $\mathrm{m}^{3} / \mathrm{h}$ | cfm | $\mathrm{ft}^{3} / \mathrm{h}$ | UK gall/m | UK gall/h | US gall/m | US gall/h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L/s <br> ( $\mathrm{dm}^{3} / \mathrm{sec}$ ) | 1 | 3600 | 0.001 | 3.6 | 2.118882 | 127.133 | 13.19814 | 791.8884 | 15.85032 | 951.019 |
| L/h | 0.000278 | 1 | - | 0.001 | 0.000588 | 0.035315 | 0.003666 | 0.219969 | 0.004403 | 0.264172 |
| $\mathrm{m}^{3} / \mathrm{s}$ | 1000 | 3600000 | 1 | 3600 | 2118.88 | 127133 | 13198.1 | 791889 | 15850.3 | 951019 |
| $\mathrm{m}^{3 / h}$ | 0.277778 | 1000 | 0.000278 | 1 | 0.588578 | 35.3147 | 3.66615 | 219.969 | 4.402863 | 264.1718 |
| cfm | 0.471947 | 1699.017 | 0.000472 | 1.699017 | 1 | 60 | 6.228833 | 373.73 | 7.480517 | 448.831 |
| $\mathrm{ft}^{3} / \mathrm{h}$ | 0.007866 | 28.3168 | - | 0.028317 | 0.016667 | 1 | 0.103814 | 6.228833 | 0.124675 | 7.480517 |
| UK gall/m | 0.075768 | 272.766 | 0.0000758 | 0.272766 | 0.160544 | 9.63262 | 1 | 60 | 1.20095 | 72.057 |
| UK gall/h | 0.001263 | 4.54609 | - | 0.004546 | 0.002676 | 0.160544 | 0.016667 | 1 | 0.020016 | 1.20095 |
| US gall/m | 0.06309 | 227.125 | 0.0000631 | 0.227125 | 0.133681 | 8.020832 | 0.832674 | 49.96045 | 1 | 60 |
| US gall/h | 0.001052 | 3.785411 | - | 0.003785 | 0.002228 | 0.133681 | 0.013878 | 0.832674 | 0.016667 | 1 |

## Table 7 Power

| From To $\rightarrow$ | $\mathbf{B t u} / \mathbf{h}$ | $\mathbf{W}$ | $\mathbf{k c a l} / \mathbf{h}$ | $\mathbf{k W}$ |
| :--- | :---: | :---: | :---: | :---: |
| Btu $/ \mathbf{h}$ | 1 | 0.293071 | 0.251996 | 0.000293 |
| $\mathbf{W}$ | 3.41214 | 1 | 0.859845 | 0.001 |
| $\mathbf{k c a l} / \mathbf{h}$ | 3.96832 | 1.163 | 1 | 0.001163 |
| $\mathbf{k W}$ | 3412.14 | 1000 | 859.845 | 1 |

Table 8 Energy
$\left.\begin{array}{lccccc}\hline \text { From To } \rightarrow & \text { Btu } & \text { Therm } & \text { J } & \text { kJ } & \text { Cal } \\ \hline \text { Btu } & 1 & 0.00001 & 1 & 1055.06 & 1.055\end{array}\right] 251.996$

Table 9 Specific heat

| From To $\rightarrow$ | Btu/lb ${ }^{\circ} \mathrm{F}$ | $\mathrm{J} / \mathbf{k g}{ }^{\circ} \mathrm{C}$ |
| :--- | :---: | :---: |
| $\mathrm{Btu} / \mathrm{lb}{ }^{\circ} \mathrm{F}$ | 1 | 4186.8 |
| $\mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ | 0.00023 | 1 |

Table 10 Heat flowrate

| From To $\rightarrow$ | Btu/fth | W/m ${ }^{2}$ | kcal/mh |
| :---: | :---: | :---: | :---: |
| Btu/ft ${ }^{2} \mathrm{~h}$ | 1 | 3.154 | 2.712 |
| W/m ${ }^{2}$ | 0.3169 | 1 | 0.859 |
| $\mathrm{kcal} / \mathrm{m}^{2} \mathrm{~h}$ | 0.368 | 1.163 | 1 |

Table 11 Thermal conductance

| From To $\rightarrow$ | $\mathrm{Btu} / \mathrm{ft}^{2} \mathrm{~h}^{\circ} \mathrm{F}$ | W/m ${ }^{\text {o }}$ C | kcal/m ${ }^{\mathbf{2}}{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| Btu/ft $\mathrm{h}^{\text {o }} \mathrm{F}$ | 1 | 5.67826 | 4.88243 |
| W/m ${ }^{\text {2 }}$ C | 0.176110 | 1 | 0.859845 |
| kcal/m ${ }^{2} \mathrm{~h}{ }^{\circ} \mathrm{C}$ | 0.204816 | 1.163 | 1 |

Table 12 Heat per unit mass

| From To $\rightarrow$ | Btu/lb | $\mathbf{k J} / \mathbf{k g}$ |  |
| :--- | :---: | :---: | :---: |
| Btu/lb | 1 | 2.326 |  |
| $\mathbf{k J} / \mathbf{k g}$ | 0.4299 | 1 | $\mathbf{m} / \mathbf{s}$ |
| Table 13 | Linear velocity |  |  |
| From To $\rightarrow$ | $\mathbf{f t} / \mathbf{m i n}$ | $\mathbf{f t} / \mathbf{s}$ | 0.00508 |
| $\mathbf{f t} / \mathbf{m i n}$ | 1 | 0.016666 | 0.3048 |
| $\mathbf{f t} \mathbf{s}$ | 60 | 1 | 1 |
| $\mathbf{m} / \mathbf{s}$ | 196.850 | 3.28084 |  |

## Temperature conversion

Can be achieved by using the following formula:
${ }^{\circ} \mathrm{F}=\left({ }^{\circ} \mathrm{C} \times 1.8\right)+32$
${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \div 1.8$

## Additional information

## Atmosphere - (standard reference)

A.N.R. (Atmosphère Normale de Référence) ISO R558.

This is the agreed atmosphere to control specification values and test results, as given in ISO R554.
Pneumatic fluid power uses $1013 \mathrm{mbar}, 20^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$ (ISO R554).
Compressor and pneumatic tool industries prefer 1000 mbar, $20^{\circ} \mathrm{C}$, 65\% RH (ISO 2787).
Aerospace, Petroleum and British Gas Industries prefer 1013 mbar, $15^{\circ} \mathrm{C}$, Dry (ISO 2533 and ISO 5024).

Fluid power users are sometimes confused by $\mathrm{Nm}^{3}$. This is not Newton-metres ${ }^{3}$ but refers to meters ${ }^{3}$ ANR, i.e. a volume of air measured against the standard or normal atmosphere reference. The equivalent imperial term is S.C.F. (Standard Cubic Feet).

## Litre

The symbol $I$ is being superceded by $L$ to avoid confusion with 1 (one). $1 \mathrm{~L}=1 \mathrm{dm}^{3}$
bar
$1 \mathrm{bar}=100 \mathrm{kPa}=100 \mathrm{kN} / \mathrm{m}^{2}$.

## $\mathrm{kg} / \mathrm{cm}^{2}$

This unit is still used in some areas. The conversions are as follows: $1 \mathrm{~kg} / \mathrm{cm}^{2}=0.980665 \mathrm{bar}=0.967841 \mathrm{atmos}=14.2233 \mathrm{psi}$

